Correction: Synaptopodin couples epithelial contractility to α-actinin-4–dependent junction maturation

نویسندگان

  • Nivetha Kannan
  • Vivian W. Tang
چکیده

During normal epithelial maturation, actin and α-actinin-4 accumulated at the cell junction over a period of several days (Fig. 1 A). By the second day post-confluence (2 dpc), most canonical junctional components, E-cadherin, α-catenin, and β-catenin, p120-catenin, and ZO-1, were already present (Fig. 1, A and B). However, vinculin has not been targeted at this early stage of junction development (Fig. 1 B). By 5 dpc, α-actinin-4 and vinculin became localized to the cell junction (Fig. 1 B). During this maturation period, the permeability barrier of the epithelial cell monolayer gradually formed (Fig. 1 C). Knockdown of α-actinin-4 prevented this maturation process and compromised the development of the barrier function (Fig. 1 C), indicating that α-actinin-4 recruitment is part of a normal maturation process during junction development. We have previously built a pressure chamber device that can deliver hydrostatic pressure to the intercellular junction to study the strength of cell–cell adhesion in an epithelial cell monolayer (Tang and Brieher, 2013). Using this setup, we show that intercellular stress induces α-actinin-4 knockdown cells to break away from each other (Fig. 1 D) and eventually detach from the monolayer (Fig. 1 E), suggesting that cell–cell adhesion has been compromised. Knockdown of α-actinin-4 abolished junctional accumulation of vinculin (Fig. 1 F) without changing the cellular levels of vinculin (Fig. 1 G). Thus, α-actinin-4 is incorporated into the maturing junctional complex before vinculin targeting and behaves as an upstream regulator of vinculin at the cell junction during junction maturation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptopodin couples epithelial contractility to α-actinin-4–dependent junction maturation

The epithelial junction experiences mechanical force exerted by endogenous actomyosin activities and from interactions with neighboring cells. We hypothesize that tension generated at cell-cell adhesive contacts contributes to the maturation and assembly of the junctional complex. To test our hypothesis, we used a hydraulic apparatus that can apply mechanical force to intercellular junction in ...

متن کامل

Colocalization of α-actinin and synaptopodin in the pyramidal cell axon initial segment.

The cisternal organelle that resides in the axon initial segment (AIS) of neocortical and hippocampal pyramidal cells is thought to be involved in regulating the Ca(2+) available to maintain AIS scaffolding proteins, thereby preserving normal AIS structure and function. Through immunocytochemistry and correlative light and electron microscopy, we show here that the actin-binding protein α-actin...

متن کامل

α-Actinin-4/FSGS1 is required for Arp2/3-dependent actin assembly at the adherens junction

We have developed an in vitro assay to study actin assembly at cadherin-enriched cell junctions. Using this assay, we demonstrate that cadherin-enriched junctions can polymerize new actin filaments but cannot capture preexisting filaments, suggesting a mechanism involving de novo synthesis. In agreement with this hypothesis, inhibition of Arp2/3-dependent nucleation abolished actin assembly at ...

متن کامل

In vitro characterization of native mammalian smooth-muscle protein synaptopodin 2.

An analysis of the primary structure of the actin-binding protein fesselin revealed it to be the avian homologue of mammalian synaptopodin 2 [Schroeter, Beall, Heid, and Chalovich (2008) Biochem. Biophys. Res. Commun. 371, 582-586]. We isolated two synaptopodin 2 isoforms from rabbit stomach that corresponded to known types of human synaptopodin 2. The purification scheme used was that develope...

متن کامل

ICAM-5 affects spine maturation by regulation of NMDA receptor binding to α-actinin

ICAM-5 is a negative regulator of dendritic spine maturation and facilitates the formation of filopodia. Its absence results in improved memory functions, but the mechanisms have remained poorly understood. Activation of NMDA receptors induces ICAM-5 ectodomain cleavage through a matrix metalloproteinase (MMP)-dependent pathway, which promotes spine maturation and synapse formation. Here, we re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 211  شماره 

صفحات  -

تاریخ انتشار 2015